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Geomagnetically induced currents (GIC) can drive power outages and damage power

grid components while also affecting pipelines and train systems. Developing the ability

to predict local GICs is important to protecting infrastructure and limiting the impact of

geomagnetic storms on public safety and the economy. While GIC data is not readily

available, variations in the magnetic field, dB/dt, measured by ground magnetometers

can be used as a proxy for GICs. We are developing a set of neural networks to

predict the east and north components of the magnetic field, BE and BN, from which

the horizontal component, BH, and its variation in time, dBH/dt, are calculated. We

apply two techniques for time series analysis to study the connection of solar wind and

interplanetary magnetic field properties obtained from the OMNI dataset to the ground

magnetic field perturbations. The analysis techniques include a feed-forward artificial

neural network (ANN) and a long-short term memory (LSTM) neural network. Here we

present a comparison of both models’ performance when predicting the BH component

of the Ottawa (OTT) ground magnetometer for the year 2011 and 2015 and then when

attempting to reconstruct the time series ofBH for two geomagnetic storms that occurred

on 5 August 2011 and 17 March 2015.

Keywords: space weather, GIC, geomagnetic storms, ground magnetic field, machine learning, neural network,

LSTM

1. INTRODUCTION

Geomagnetically induced currents (GICs) are one of the most significant space weather effects
due to their potential to damage the power grid and can cause widespread, long-term power
outages. Thus, the ability to forecast GICs is of significant interest to the space weather community,
industry partners, and national interests. The intensity of GICs is determined by the strength of
the geoelectric field. However, neither measurements of GICs nor the geoelectric field are readily
available. The geoelectric field is driven by temporal changes in the magnetic field and the local
geology. Thus, measurements of dB/dt using ground magnetometers are used as a proxy for
studying GICs. Ngwira et al. (2018) studied two storms during which intense dB/dt peaks occurred
and indicated that substorms appear to be the driver of GICs, but state that it’s not clear how the
widespread features of substorms lead to localized peaks in dB/dt. They theorize that it could be

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2020.550874
http://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2020.550874&domain=pdf&date_stamp=2020-10-06
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles
https://creativecommons.org/licenses/by/4.0/
mailto:amy.keesee@unh.edu
https://doi.org/10.3389/fspas.2020.550874
https://www.frontiersin.org/articles/10.3389/fspas.2020.550874/full


Keesee et al. Modeling Ground Magnetic Perturbations

due to “the mapping of magnetospheric currents to local
ionospheric structures,” but indicate that further study is needed.
Physics based models are used to determine magnetic field
fluctuations, but high resolution models are needed to obtain
the spatially localized variations (Welling et al., 2019). Such
models are computationally expensive and take longer time to
run, posing challenges for their use as a forecasting tool. Machine
learning based models have the potential for providing efficient,
computationally inexpensive forecasts. Wintoft et al. (2015)
developedmodels using Elman neural networks to predict the 30-
min maximum of dBH/dt (horizontal component of dB/dt) from
ACE solar wind and magnetic field measurements. Their models
generally predict the timing of GICs caused by sudden impulses
well, even when they train the model using only ACE magnetic
field measurements.

While many studies of GICs focus on high magnetic latitudes
(>60◦) that lie under the auroral oval, it has been shown that
mid- (50◦–60◦) and low- (<50◦) latitude regions are also at risk
(Gaunt and Coetzee, 2007; Ngwira et al., 2008; Pulkkinen et al.,
2010; Oliveira et al., 2018). Lotz and Cilliers (2015) developed a
neural network based model using solar wind and IMF inputs
and dB/dt measurements at a Southern hemisphere mid-latitude
station as outputs. They developed separate models for the north
and east components of the geomagnetic field and found that
fluctuations in the eastward component are more dependent on
the interplanetary magnetic field (IMF) Bz . Similar to Wintoft
et al. (2015), they found reasonable predictions of the timing of
intense fluctuations, with less accuracy as the storm evolved.

More complex neural network architectures can be used
to improve the predictions for time-series data. For example,
recurrent neural networks such as long short-term memory
(LSTM) techniques are used to "remember" parameters from
earlier times that have a strong influence on the output features.
In this study we present a comparison of models using a
feed-forward artificial neural network (ANN) with a built-
in time dependence and a LSTM neural network to predict
the ground magnetic field north and east components (and
therefore the perturbations dBH/dt) at the mid-latitude ground
magnetometer station located in Ottawa (OTT). We then discuss
the performance of the models by using two of the benchmark
geomagnetic storms suggested by Welling et al. (2018) and
Pulkkinen et al. (2013). Finally, we discuss several model
variations that were implemented during the course of this
study to determine possible improvements to the performance
of the models.

2. DATA

For this study, we use solar wind and interplanetary magnetic
field (IMF) data obtained from the OMNIWeb dataset available
through NASA’s Space Physics Data Facility from 1995 through
2010 for the purpose of training and validation of themodels, and
from 2011 and 2015 for testing. These 2 years were selected for
testing because they include storms from the Pulkkinen-Welling
validation set for ground magnetic perturbations (Pulkkinen
et al., 2013; Welling et al., 2018). Baseline-removed ground

magnetometer data fromOTT has been obtained from SuperMag
(Gjerloev, 2012). The Ottawa ground magnetometer is located
at magnetic latitude 54.98◦ N and lags UT by 5 h (meaning
local midnight occurs at 05:00 UT). The choice of using solar
wind data from OMNI instead of the more traditional and
continuously available geomagnetic indices is based on the long-
term goal of being able to forecast variations in the ground
magnetic field ahead of time, and real time solar wind parameters
obtained at the L1 position tend to give a 30–40 min window
to distribute a warning. However, the OMNI dataset has been
mostly avoided in the past as it contains approximately 20% of
missing data distributed roughly evenly through the years in the
plasma parameters and∼ 8% in the IMFmeasurements. This was
noted by Wintoft et al. (2015), leading them to compare models
trained on just the magnetic field vs. combined magnetic field
and plasma measurements. Our intention is to use both IMF
and plasma parameters. Since a relatively continuous dataset is
preferred for training, some linear interpolation has been done
in the training/validation dataset of up to 10 min in all missing
parameters, which reduces the missing values to ∼ 6% in both
IMF and plasma measurements. OTT ground magnetic field
measurements have less than 1% of missing data during the
period of study. Those missing data points have been removed
from the training set. For the testing periods of 2011 and 2015
a full linear interpolation has been performed to the solar wind
data to achieve a completely continuous dataset.

Although dBH/dt is the best proxy measurement to GIC
forecasting, it is also very noisy and therefore difficult to forecast
directly with data-driven models. Tóth et al. (2014) also found
this to be true for first principles-based models. We therefore aim
to first predict the northward and eastward components of the
baseline-removed groundmagnetic field, BN and BE, respectively,
using two independent models and then combine them to obtain
the predicted horizontal component

BH =

√

B2N + B2E. (1)

For the purpose of comparison with the metrics defined by
Pulkkinen et al. (2013) we also need to obtain

(

dB/dt
)

H
, which is

calculated as

(

dB

dt

)

H

=

√

dBN

dt

2

+
dBE

dt

2

(2)

where

dBi

dt
=

[Bi(t + 1min)− Bi(t)]

1min
.

t is determined by the ground data resolution (1 min), and i
represents the components N or E. We emphasize that large
variations are most likely to result in significant GIC events.

3. MODELS

3.1. Feed-Forward Artificial Neural Network
In our first attempt to forecast the BE and BN components we
have chosen to train a fully-connected, feed-forward, artificial
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neural network (ANN) developed using the TensorFlow-
Keras environment (Abadi et al., 2015). The Tensorflow-Keras
environment is highly modular and allows the easy integration
of data and different types of networks. It also allows integration
and computation through GPUs instead of the traditional CPU
computing which reduces significantly (in our case, up to a factor
of 10) the training times. For the network architecture we have
chosen a 4-layer deep network with hidden layers of 291-146-73-
36 neurons plus a dropout layer (rate 0.1) in between the first
and second layer to avoid overfitting. Such selection of neurons
matches the dimensionality of the feature vectors and then each
layer is halved. We have selected mean square error (MSE) as our
loss function, ADAM as our optimizer, and a REctified Linear
Unit (RELU) as our activation function. We track the loss in
the validation dataset and stop the training after the MSE has
not decreased for 25 epochs to avoid overfitting. To incorporate
time dependence in the ANN, the input vector for t includes
features from previous time steps, e.g., t − 1, t − 2. We have
chosen to include a 2-h time-history for solar wind speed (VT ,Vx,
Vy, Vz), IMF (BT , Bx, By, Bz), proton density, dynamic pressure,
temperature and solar wind electric field using a 1-min cadence
for the first 12 preceding minutes (i.e., up to t − 12) plus 10-min
averages over the entire interval (yielding 12 additional values).
Additionally, ground magnetometer sin(MLT) and cos(MLT)
values have been included to ensure a cyclical dependence over
the Earth’s rotation and solar zenith angle as a proxy of both
longitude and yearly seasonality. The resulting feature vector thus
contains 291 features and that explains our choice of neurons
in the first layer. OMNI data from 1995 to 2010 was split
sequentially 70% for training and 30% for validation. The model
was then trained and the result used on the test data from 2011
to 2015.

Figure 1 (top row) presents a density plot of the log10(real)
vs. log10(predicted) BH values calculated using the validation
and test results obtained for BE and BN and Equation ( 1).
The ANN performs a relatively good job at predicting values
for the validation set with a root mean square error (RMSE)
of ∼8.7 nT and an explained variance of 39%, resulting in a
correlation coefficient of 0.61. For the test cases, the respective
RMSE values are ∼ 9.2 nT with explained variance of 36% and
correlation coefficient 0.60 for the year 2011 and an RMSE of
∼14.7 nT and explained variance of 44% with a correlation
of 0.66 for the year 2015. While the predictions could be
improved, the consistency of the values of Figure 1 indicate
that the model is not overfitting. The correlation coefficient
values are a bit lower to those obtained by Lotz et al. (2017)
of 0.71 and 0.69 for models predicting separate components of
the horizontal magnetic field at a mid-latitude station. Wintoft
et al. (2015) obtainmuch higher correlation coefficients, although
they are only considering the maximum value within each 30-
min window. The slightly worse RMSE values obtained for
the year 2015 could be due to the higher variability of a
year in the solar maximum. We have also plotted the error
distributions for the predictions of the validation and 2011 and
2015 test sets (See Supplementary Material). The similarity in
the error distributions is also an indication of a model that is not
overfitting, consistent with Figure 1.

3.2. Long Short Term Memory
The long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) recurrent neural network was developed
using TensorFlow-Keras (Abadi et al., 2015). The input features
used in the LSTMmodel were the same as were used for the ANN
as was the training-validation split of the 1995-2010 OMNI data.
The LSTMmodel requires an extra dimension in the input vector
to build in the time history. To keep the models consistent with
each other, the LSTM model also uses the preceding 12-min plus
10-min averages over the preceding 2 h time history. Memory
limitations required the use of a custom data generator which
fed batch sizes of 512 training samples sequentially into the
model for training. The network consists of a single LSTM layer
with 147 neurons and a single dense layer with one neuron. A
RELU is used as the activation function, the optimizer is ADAM,
and the loss function MSE. As with the ANN, validation loss
was monitored and training was stopped after the MSE had not
decreased in 25 epochs. Although recurrent neural networks,
and in particular LSTM, are capable of utilizing the time history
of the target parameter (in this case, BN or BE) to improve the
prediction, in this study we have chosen not to use it in order
to obtain a closer comparison with the ANN model. Once the
model was trained, it was tested on data from 2011 and 2015.

The real vs. predicted values of BH for the validation and
test datasets are shown as a density plot in Figure 1 (bottom
row). The RMSE of the validation set is 8.7 nT with a 33%
explained variance, 9.7 nT for the 2011 dataset with a 35%
explained variance and 16.8 nT for the 2015 dataset with a 36%
explained variance. The consistency of the correlation coefficients
(shown in Figure 1) indicates that the model did not suffer from
overfitting, which could have been a concern with the amount
of input data. Considering these parameters, the LSTM model
seems to under-perform the ANN. Similarly to the ANN case,
the error distribution for the predictions of the LSTM model
further indicate that the model is not severely overfitting (see
Supplementary Material).

4. RESULTS

The two types of models we trained are used to predict BN
and BE during storms that occurred on 5 August 2011 and 17
March 2015. The selection was based on the recommendations
from the Pulkkinen-Welling validation set for ground magnetic
perturbations (Pulkkinen et al., 2013; Welling et al., 2018). These
two storms were selected because they are outside of the time
range used to train and validate the models and because they
correspond to two very different years in terms of geomagnetic
activity, 2011 being on the minimum-ascending part of the solar
cycle, and 2015 corresponding to the solar cycle maximum.
The predicted values are used to calculate BH (Equation 1) and
dBH/dt (Equation 2), and both values are compared to the real
measurements. The results for a third storm from the validation
set, 17 March 2013, are shown in the Supplementary Material.

4.1. August 5 2011 Storm
Figure 2 shows the temporal evolution of the 5 August 2011
geomagnetic storm,including SYM-H index, solar wind speedVx,
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FIGURE 1 | Density plots of real vs. predicted values of BH for the ANN (top) and the LSTM (bottom). The comparisons of actual measurements to model predictions

using validation data (left column) and test data from 2011 (middle column) and 2015 (right column) are shown. The correlation coefficient, R, is given in each panel.

IMF magnetic field z-component, along with the measured BH
and dBH/dt at Ottawa station, and the predicted BH and dBH/dt
from the ANN and LSTM models. This is a strong storm with a
minimum SYM-H value of –126 nT, driven by a combination of
a coronal mass ejection and high speed stream, with the shock
arriving at Earth leading to a sudden storm commencement
around 18 UT on August 5. In this event, BH presents a clear
response to the storm that shows as repeated dBH/dt variations
of up to ∼50 nT/min occurring for several hours during the
storm main phase, following the period of quick increase in solar
wind speed and mostly during the time in which the IMF Bz
component is strongly and persistently southward.

In terms of reconstructing the BH evolution, neither model
does a good job of predicting the first two enhancements.
The ANN does a decent job predicting the third and fourth
enhancements. After ∼23:00 UT on August 5, the ANN
predicts some increases but does not match the magnitude
likely due to these being later in the storm when the
magnetic field perturbations are controlled more by parameters
within the magnetosphere or ionosphere, although this is
also a period in which the actual fluctuations in BH are
relatively small. The LSTM doesn’t do well predicting the
enhancements during this storm in general. Considering the
dBH/dt, the ANN comes close to predicting the timing
of the biggest spike in dBH/dt at ∼20:00 UT on August
5, at about half the magnitude, while the LSTM misses
this completely.

4.2. March 17 2015 Storm
Figure 3 shows the evolution of the 17 March 2015 geomagnetic
storm using the same format as Figure 2. This was the largest
geomagnetic storm of solar cycle 24, with minimum SYM-H
index of –234 nT. Carter et al. (2016) analyzed the ground
magnetic perturbations during this storm, showing that the
mid- and low-latitude fluctuations predominantly occurred at
the sudden storm commencement. This indicates that the solar
wind parameters are most important for predicting GICs at
mid-latitude.

Both models miss the initial spike at the sudden storm
commencement just before 5:00 UT, and start to predict
enhanced BH about 2–3 h later. Both models predict some
enhancement near 8:00 UT, though matching the real
enhancement is unlikely due to this being an interval of
linear interpolation of the input data (as seen in the straight
line in the solar wind velocity and IMF Bz over 7:00–9:00 UT).
This linear interpolation results in the ANN overpredicting the
magnitude and the LSTM predicts significant spikes. The LSTM
does a better job of predicting the enhancement just after 12:00
UT, even getting close in overall magnitude of BH . Again, the
linearly interpolated input data (∼15:00–17:00 UT) reduces the
ability to accurately predict the second half of this enhancement.
Only the ANN predicts the largest enhancement at ∼21:00 UT,
but does not match the shape of the peak or timing.

It is important to note that in this particular storm, there
are some gaps in the solar wind measurements, particularly
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FIGURE 2 | August 5, 2011 storm measurements and predictions, including Sym-H index, solar wind velocity, interplanetary magnetic field z-component, measured

(blue solid) and predicted (red dashed) horizontal magnetic field and time-dependent variation at OTT ground station for the ANN and LSTM models.

between 06–08 UT and then on 16–18 UT on March 17. In
order to generate a prediction, the solar wind data has been
linearly interpolated. Despite the missing data, a simple linear
interpolation allows the models to recover part of the variability
of the ground magnetic field fluctuations, suggesting that efforts
on gap-filling, including empirical modeling of the solar wind
data could still yield positive results in the risk assessment
of GICs.

4.3. Validation Metrics
The Pulkkinen-Welling recommendations include four metrics
for validating predictions of ground magnetic perturbations
(Pulkkinen et al., 2013; Welling et al., 2018) using binary event

analysis. For a particular storm, the interval of interest is divided
into non-overlapping, 20-min windows, and for each window, a
dB∗H/dt value is calculated as the maximum measured dBH/dt
within the window. In addition to the method of calculating
(dB/dt)H using Equation (2), we use the power law empirical
fitting for the OTT station described by Tóth et al. (2014),

dBH

dt
=

(

BH

248 nT

)1.04 nT

s
, (3)

and present both results for comparison. Pulkkinen-Welling
propose four different thresholds of 0.3, 0.7, 1.1, and 1.5 nT/s
to evaluate if the model is able to predict a variation of that
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FIGURE 3 | March 17, 2015 storm measurements and predictions, including SYM-H index, solar wind velocity, interplanetary magnetic field z-component, measured

(blue solid) and predicted (red dashed) horizontal magnetic field and time-dependent variation at OTT ground station for the ANN and LSTM models.

magnitude. Since the thresholds are in nT/s, and our calculated
dBH/dt is in nT/min, we multiply the thresholds by 60. Using
the values of the predicted dB∗H/dt, we determine whether the
model accurately predicts the events by calculating true positives,
false positives, true negatives, and false negatives. Accuracy is
determined by calculating the following metrics: probability of
detection (POD), probability of false detection (PFD), proportion
correct (PC), and Heidki Skill Score (HSS). Table 1 displays the
metrics for the ANN and LSTM for the 2011 and 2015 storms.
The missing values are due to no occurrences of the real and

predicted values crossing the higher thresholds. The metrics for
the 2013 storm are also shown in the Supplementary Material,
and although they are a bit better than for the 2011 and 2015
storms, it suffers from having very few thresholds crossings
beyond 0.3 nT/s for the Ottawa station.

The poor prediction of the LSTM for the 2011 storm is
evident in the low POD and HSS values. The low PFD (lower
is better) and high PC are indicative of the low numbers of
real crossings of the threshold levels. The Tóth et al. (2014)
empirical fitting method results in improved metrics for these
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TABLE 1 | Validation metrics for the 05 August 2011 and the 17 March 2015

geomagnetic storms using dBH/dt maximum values every 20 min calculated from

the Pulkkinen definition (Equation 2) and the Tóth empirical fitting (Equation 3).

Pulkkinen Tóth

18 42 66 90 18 42 66 90

2011 Storm ANN POD 0.33 0.00 — — 0.50 0.50 — —

LSTM POD 0.08 0.00 — — 0.00 0.00 — —

ANN PFD 0.02 0.00 0.00 0.00 0.02 0.03 0.03 0.01

LSTM PFD 0.08 0.00 — — 0.00 0.00 — —

ANN PC 0.88 0.97 1.00 1.00 0.90 0.96 0.97 0.99

LSTM PC 0.85 0.97 1.00 1.00 0.84 0.97 1.00 1.00

ANN HSS 0.41 0.00 — — 0.58 0.37 — —

LSTM HSS 0.13 0.00 — — 0.00 0.00 — —

2015 Storm ANN POD 0.09 0.00 0.00 0.00 0.69 0.77 0.00 0.00

LSTM POD 0.13 0.11 0.20 0.00 0.38 0.33 0.20 0.00

ANN PFD 0.00 0.00 0.00 0.00 0.13 0.13 0.00 0.00

LSTM PFD 0.05 0.07 0.07 0.07 0.19 0.08 0.03 0.00

ANN PC 0.73 0.92 0.95 0.98 0.82 0.86 0.95 0.98

LSTM PC 0.71 0.86 0.90 0.92 0.68 0.87 0.94 0.98

ANN HSS 0.13 0.00 0.00 0.00 0.56 0.42 0.00 0.00

LSTM HSS 0.09 0.04 0.10 0.00 0.19 0.23 0.19 0.00

Four threshold values in nT/min are used.

models, as they found for a first principles-based model. In
fact, the ANN has a similar HSS for the 0.3 nT/s threshold
as they report for mid-latitude stations (0.583). However, our
methods have a lot of potential for improvement. We had
originally trained and optimized a single model of each type that
predicted BH , rather than independent models for BN and BE.
The single models of each type had better correlation coefficients,
explained variance, and RMSE than the values discussed in
section 3, but much lower validation metrics than those shown
in Table 1. (We note that predicting only BH requires calculation
of dBH/dt directly, rather than being able to use Equation 2,
such that the metrics do not have a one-to-one comparison.
We implemented separate modeling of the north and east
components for more direct comparison with other models
since the Pulkkinen et al. (2013) method is widely accepted.)
Using this single model method, we also trained models that
use only 24 min of time history but all at a 1-min cadence. The
use of the 10-min averages produced higher explained variance
scores of BH . However, this resulted in a smoothing of the BH
prediction. This smoothing causes less variation in the dBH/dt
predictions and decreases the HSS. Additionally, the LSTM
performs poorly, likely due to the fact that we did not use the time
history of the target parameter, despite that being the strength of
the LSTM.

5. CONCLUSIONS

We have developed and compared two types of models that
predict the north and east components of the ground magnetic

field, BN and BE, at a single mid-latitude ground station. One
model is a feed-forward artificial neural network that includes
time dependence as input features and the other is a long short-
term memory neural network. The predictions from each model
are compared to real measurements for 2 years, 2011 and 2015,
including a storm during each year. There is some ability for
each of the models to predict the timing of magnetic field
perturbations, though this ability is not consistently better for
either model between the storms and neither is able to predict
the magnitude of the enhancements or predict enhancements
later in the storm. Validation metrics indicate that the LSTM
is barely more skilled than random or constant predictions,
and that using an empirical fitting improves HSS as it does
for first principles-based models. Next steps to improve the
models include adjustments of the input parameters, increased
time history cadence, and comparison to additional time series
techniques. Another limitation of these models is the use of only
one ground magnetometer station. We expect better predictions
if we include more ground stations in the mid-latitude range to
get more MLT coverage.
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